Schwann cells of the myelin-forming phenotype express neurofilament protein NF-M

نویسندگان

  • B M Kelly
  • C S Gillespie
  • D L Sherman
  • P J Brophy
چکیده

Immature Schwann cells of the rat sciatic nerve can differentiate into myelin-forming or non-myelin-forming cells. The factors that influence this divergent development are unknown but certain markers such as galactocerebroside distinguish the two cell populations at an early stage of Schwann cell differentiation. Because myelination requires extensive changes in cell morphology, we have investigated the composition and structure of the Schwann cell cytoskeleton at a time when these cells become committed to myelination. Here we show that Schwann cells express a cytoskeletal protein of M(r) 145 before diverging into the myelin-forming path, i.e., before they acquire cell-surface galactocerobroside. The p145 protein has the characteristics of an intermediate filament (IF) protein and immunoelectron microscopy shows that it colocalizes with vimentin, which suggests that these two proteins can coassemble into IFs. Elevated intracellular cAMP levels, which can mimic some of the early effects of axons on Schwann cell differentiation, induced p145 synthesis, therefore, we conclude that myelin-forming Schwann cells express this protein at a very early stage in their development. Immunological comparisons with other IF proteins revealed a close similarity between p145 and the neurofilament protein NF-M; the identification of p145 as NF-M was confirmed by isolating and sequencing a full-length clone from a Schwann cell cDNA library. These data demonstrate that Schwann cells remodel their IFs by expressing NF-M before acquiring the myelin-forming phenotype and that IF proteins of the neurofilament-type are not restricted to neurons in the vertebrate nervous system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myotubularin-related 2 protein phosphatase and neurofilament light chain protein, both mutated in CMT neuropathies, interact in peripheral nerve.

Charcot-Marie-Tooth disease type 4B1, CMT4B1, is a severe, autosomal-recessive, demyelinating peripheral neuropathy, due to mutations in the Myotubularin-related 2 gene, MTMR2. MTMR2 is widely expressed and encodes a phosphatase whose substrates include phosphoinositides. However, this does not explain how MTMR2 mutants specifically produce demyelination in the peripheral nerve. Therefore, we a...

متن کامل

بررسی اثر لیتیوم کلراید در القای سلول‌های استرومایی مغز استخوان به سلول‌هایی با فنوتیپ عصبی

  Background & Objective : Bone marrow stromal cells (BMSCs) are a kind of stem cells with high pluripotency. The BMSCs can differentiate into mesodermal and non mesodermal cells. Because of availability of them, they are a suitable source of adult stem cells for cell therapy. Some inducers were used to differentiate stem cells into neural phenotype, such: retinoic acid, dimethyl sulfoxide, dep...

متن کامل

Protein kinase A-induced phosphorylation of the p65 subunit of nuclear factor-kappaB promotes Schwann cell differentiation into a myelinating phenotype.

Axon-Schwann cell interactions are critical for myelin formation during peripheral nerve development and regeneration. Axonal contact promotes Schwann cell precursors to differentiate into a myelinating phenotype, and cAMP-elevating agents can mimic this; however, the mechanisms underlying this differentiation are poorly understood. We demonstrated previously that the transcription factor nucle...

متن کامل

GAP-43 is expressed by nonmyelin-forming Schwann cells of the peripheral nervous system

Recently it has been demonstrated that the growth-associated protein GAP-43 is not confined to neurons but is also expressed by certain central nervous system glial cells in tissue culture and in vivo. This study has extended these observations to the major class of glial cells in the peripheral nervous system, Schwann cells. Using immunohistochemical techniques, we show that GAP-43 immunoreact...

متن کامل

Non-myelin-forming perisynaptic schwann cells express protein zero and myelin-associated glycoprotein.

Perisynaptic Schwann cells (PSCs) envelop axonal terminals and are physiologically distinct from the nearby myelinating Schwann cells (MSCs), which surround the same innervating motor axons. PSCs have special functions at the neuromuscular synapse, where they detect and can modulate neurotransmitter release. Although PSCs are similar to non-myelinating Schwann cells in that they do not form mul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 118  شماره 

صفحات  -

تاریخ انتشار 1992